نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست فناوری دریا، دانشکده علوم و فنون دریایی، دانشگاه خلیج فارس، بوشهر، ایران

2 گروه محیط زیست، دانشکده مهندسی محیط‌زیست دانشگاه علوم و فنون دریایی خرمشهر

چکیده

هدف از این تحقیق، جداسازی و شناسایی مولکولی باکتری‌های همراه با اسفنج با پتانسیل تجزیه زیستی نفت خام می باشد. بافت مزوهیل اسفنج Pachychalina sp. هموژنیزه شده و رقت های مختلف آن در محیط کشت های مناسب کشت داده شد. کلنی های به دست آمده بر اساس شاخص امولسیون سازی و میزان رشد در محیط حاوی 2% نفت غربالگری شدند. از بین باکتری های جداسازی شده، 6 باکتری بالاترین میزان رشد در محیط نفتی را دارا بودند که میزان حذف نفت توسط 6 سویه مذکور در محیط نمکی حداقل مورد سنجش قرار گرفت. سویه ها همچنین بر اساس توالی ژن SrRNA 16 و با انجام PCR مورد شناسایی مولکولی قرار گرفتند. نتایج حاصل از بررسی درصد حذف نفت بر اساس دو روش جذب در 420 نانومتر و میزان وزن خشک تایید کننده یکدیگر بوده و هر دو از یک الگو پیروی نمودند. بر این اساس، سویه های KE5 و KE8 بیشترین میزان حذف نفت را نشان دادند که نتایج شناسایی مولکولی این دو سویه مشخص نمود بیشترین شباهت را به ترتیب با سویه های Staphylococcus aureus subsp.N315 و Luteimonas terricola BZ92r دارا می باشند. با توجه به نتایج به دست آمده از همترازی های ژنومی، تعیین فاصله ژنتیکی و رسم درخت فیلوژنتیکی، به نظر می رسد سویه های KE6 و KE7 به ترتیب با داشتن 86% و 90% شباهت با سویه های Exiguobacterium sp. AT1b و Pseudomonas rhodesiae CIP 104664 پتانسیل قابل توجهی برای انجام مطالعات بیشتر مولکولی و بیوشیمیایی دارا بودند.

کلیدواژه‌ها

موضوعات

Ahmed AW., Alzubaidi FS. and Hamza SJ. 2014. Biodegradation of Crude Oil in Contaminated Water by Local Isolates of Enterobacter cloacae. Iraqi Journal of Science. 55:1025-1033.
AnzaiY., Kim H., Park JY., Wakabayashi H. and Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. International journal of systematic and evolutionary microbiology. 50(4): 1563-1589.
 
Baïda N., Yazourh A., Singer E. and Izard D. 2002. Pseudomonas grimontii sp. nov. International journal of systematic and evolutionary microbiology. 52(5): 1497-1503.
Banerjee R. and Roy D. 2009. Codon usage and gene expression pattern of Stenotrophomonas maltophilia R551-3 for pathogenic mode of living. Biochemical and biophysical research communications. 390(2): 177-181.         
Bertrand JC., Almallah M., Acquaviva M. and Mille G. 1990. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letters in Applied Microbiology. 11(5): 260-263.
Buddingh G. 1975. Bergey's Manual of Determinative Bacteriology 8th edition, edited by RE Buchanan and NE Gibbons. The American Journal of Tropical Medicine and Hygiene. 24(3): 550-550.            
Chand Raza A. and Nusrt J. 2010. Evaluation of biodegradation potential of bacteria in crude oil contaminated soil. Biologia. 56:77-85.     
Cheng N., Fang Z., Huang H., Fang Z., Wu X. and Bao S. 2008. Phylogenetic diversity of bacteria and Archaea associated with the marine sponge Pachychalina sp. Polish Journal of Ecology.56(3): 505-510.        
Dhail S. and Jasuja N D. 2012. Isolation of biosurfactant-producing marine bacteria. African Journal of Environmental Science and Technology. 6(6): 263-266.        
Fuerst JA. 2014. Diversity and biotechnological potential of microorganisms associated with marine sponges. Applied microbiology and biotechnology. 98(17): 7331-7347.            
Hassanshahian M., Emtiazi G., Kermanshahi R K. and Cappello S. 2010. Comparison of oil degrading microbial communities in sediments from the Persian Gulf and Caspian Sea. Soil and Sediment Contamination. 19(3):277-291.            
Hassanshahian M., Tebyanian H. and Cappello S. 2012. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Marine pollution bulletin. 64(7): 1386-1391.
Hassanshahian M., Zeynalipour MS. and Musa, FH. 2014. Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Marine pollution bulletin. 82:39-44.
Heyrman J., Logan N A., Rodríguez-Díaz, M., Scheldeman P., Lebbe L., Swings J.and De Vos P. 2005. Study of mural painting isolates, leading to the transfer of ‘Bacillus maroccanus’ and ‘Bacillus carotarum’to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to ‘Bacillus macroides’ and description of Bacillus muralis sp. nov. International journal of systematic and evolutionary microbiology. 55(1): 119-131.    
Islam M S. and Tanaka M. 2004. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine pollution bulletin. 48(7): 624-649.
Kämpfer P., Arun A., Busse H J., Langer S., Young C C., Chen W M. and Rekha, P. 2010. Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. International journal of systematic and evolutionary microbiology. 60(5): 1027-1030.      
Kiran G S., Thomas T A., Selvin J., Sabarathnam B. and Lipton A. 2010. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresource technology.101(7): 2389-2396.          
Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I. and Nagai, Y. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet. 357(9264): 1225-1240.   
 
Lade AT. 2014. Bioremediation of Hydrocarbons via Geobacillus Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriological Reviews. 38(3): 272.
Latha R. and Kalaivani, R. 2012. Bacterial degradation of crude oil by gravimetric analysis. Advances in Applied Science Research. 3(5):2789-2795.    
Liu H., Yao J., Yuan Z., Shang Y., Chen H., Wang F. and Blake R. E. 2014. Isolation and characterization of crude-oil-degrading bacteria from oil-water mixture in Dagang oilfield, China. International Biodeterioration & Biodegradation. 87: 52-59.       
Mehrshad M., Amoozegar M., Yakhchali B. and Shahzade-Fazeli, S. 2012. Biodiversity of moderately halophilic and halotolerant bacteria in the western coastal line of Urmia Lake. Biol. J. Microorg. 1: 49-70.
Milić JS., Beškoski V P., Ilić M V., Ali S A., Gojgić-Cvijović G. Đ. and Vrvić M M. 2009. Bioremediation of soil heavily contaminated with crude oil and its products: composition of the microbial consortium. Journal of the Serbian Chemical Society. 74(4): 455-460.
Mills M A., Bonner J S., McDonald T J., Page C A. and Autenrieth R L. 2003. Intrinsic bioremediation of a petroleum-impacted wetland. Marine Pollution Bulletin. 46(7): 887-899.            
Nemati Kh., savari A., Safahieh A., and Ghanemi k. 2016. Investigation of the efficiency of tetraselmis sp microalgae in removal of chrysene aromatics hydrocarbons and Benzo (a) pyrene from Imam Khomeini portland petrochemical. Journal of Marine Science and Technology, doi: 10.22113/jmst.2016.39404
Nicholson C A. 2005. Biodegradation of petroleum hydrocarbons by halophilic and halotolerant microorganisms. Oklahoma State University.
Oren A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology and Biotechnology. 28(1):56-63.
Pathak H. 2011. Alcaligenes-the 4T engine oil degrader. Journal of Bioremediation and Biodegradation.
Porebski S., Bailey LG. and Baum B R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant molecular biology reporter. 15(1): 8-15.
Roozbehani B., Mirdrikvand M., Moqadam SI, and Khalifeh A. 2013. Effect of Pseudomonas Bacteria Biosurfactants on Persian Gulf Crude Oil Water Contamination: Optimized Conditions of Effective Parameters. American Journal of Oil and Chemical Technologies. 1:8-23
Santisi S., Cappello S., Catalfamo M., Mancini G., Hassanshahian M., Genovese L. and Yakimov M M. 2015. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Brazilian Journal of Microbiology. 6(2): 377-387.
Santos O., Soares A., Machado F., Romanos M., Muricy G., GiambiagideMarval M. and Laport M. 2015. Investigation of biotechnological potential of sponge associated bacteria collected in Brazilian coast. Letters in applied microbiology. 60(2): 140-147.
Sepahi A A., Golpasha I D., Emami M., and Nakhoda A. 2008. Isolation and Characterization of Crude Oil Degrading Bacillus Spp. Iranian Journal of Environmental Health Science & Engineering. 5:149-154.
Shahaliyan F., Safahieh A., Salamat N., Mojudi F. and Zaredost M. 2015. Investigating the ability of anthracene biological removal from Bacillus pumilus bacteria isolated from Imam Khomeini port sediments . Journal of Marine Science and Technology. 14(3): 35-43
Sheyni Y., Motamedi H. and Pourbabaei A. 2014. Isolation and identification of oil sludge degrading bacteria from production tank Number 9 Masjed Soleiman. Biological Journal of Microorganism. 3(10): 13-26.
Ukpaka C. 2011. The effect of mesophilic and thermophilic temperature on bonny light crude oil degradation in Niger Delta Area of Nigeria using Pseudomonas sp. Journal of Engineering and Technology Research. 3(13): 360-370.    
Vishnivetskaya T A., Lucas S., Copeland A., Lapidus A., del Rio T G., Dalin E. and Pitluck S. 2011. Complete Genome Sequence of the Thermophilic Exiguobacterium sp. AT1b. Journal of bacteriology. 193:2880-2881            
Wang G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. Journal of Industrial Microbiology and Biotechnology.33(7):545-551.   
Watanabe K. 2001. Microorganisms relevant to bioremediation. Current opinion in biotechnology. 12(3): 237-241.            
Zhang D C., Liu H C., Xin YH., Zhou YG., Schinner F. and Margesin R. 2010. Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. International journal of systematic and evolutionary microbiology.60(7), 1581-1584.     
 
Isolation and Molecular Identification of Oil Degrading Bacteria Associated with Pachychalina sp. Sponge
 
Khanomnaz Ebadi[1], Mandana Zarei1 *, Ali Mohammad Sanati3
 
1. Marine biotechnology, Faculty of Marine Science and Technology, Persian Gulf University, Bushehr, Iran
2. Persian Gulf Institute, Department of environment, Bushehr, Iran
 
Abstract
The aim of this study was to isolate and molecular identification of associated bacteria in sponges, with potential ability of biodegrading crude oil. Serial dilutions of homogenized Pachychalina sp. mesohyl were cultured in suitable medium for growth of marine microorganism. Obtained colonies were screened based on emulsification index and growth in medium containing 2% oil. Six strains which showed the highest growth rate and emulsification index were tested for the amount of oil removal in the minimal salt medium. Also the molecular identification was done Based on the 16SrRNA sequence and PCR. Removal of oil based on two methods; dry weight and absorption at 420 nm confirmed each other and both followed the same pattern. Accordingly KE5 and KE8 strains showed the highest degree of oil removing and molecular identification results revealed that they were most similar to strains of Staphylococcus aureus subsp. N31 and Luteimonas terricola BZ92r respectively. Also according to the results of bioinformatics analysis, it seems KE6 and KE7 respectively with 84% and 90% similarity with Exiguobacterium sp. AT1b and Pseudomonas rhodesiae CIP 104664 strains, have considerable potential for further molecular and biochemical studies and there is the possibility of introducing them as new strains.
 
Keywords‏:Emulsification, Thermophile, Halophile, Persian Gulf, Marine bacteria
 
 
Table 1: Materials required for polymerase chain reaction
Table 2: Polymerase Chain Reaction Program
Table 3: Systematic Specifications of  crude oil degradation strains
Table 4: The closest strain of the database to the sequence of the 16SrRNA gene of the sequenced bacteria
Table 5: Growth rate of bacteria and oil degradation
Figure 1: Image of the 16srRNA gene electrophoresis for isolated strains
Figure 2: Emulsion index chart for 6 isolates
Figure 3: emulsification index
Figure 4: Growth of KE7 strain at concentrations of 2, 5, 10 and 15% salt
Figure 5: The percentage of oil removal based on absorbance at 420 nm
Figure 6: The percentage of crude oil removal based on dry weight
* Corresponding author, E-mail: zarei.mandana@yahoo.com