ارزیابی سرعت تکثیر، میزان پروتئین و برخی خصوصیات فیزیولوژیک در سوئه فیتیولانکتون آب شور میکروجلبیکی

رویا محمدخانی، مریم مجدد خان

1. گروه زیست شناسی، دانشکده علوم، دانشگاه لرستان، اردبیل
2. گروه زیست شناسی (فیزیولوژی)، دانشکده علوم، دانشگاه لرستان، اردبیل

چکیده

نظر به اهمیت گزینش سوئه‌ها و تکثیر فیتیولانکتون به منظور تغذیه آبزیان پرورشی ارجیابی سرعت تکثیر، میزان پروتئین و برخی خصوصیات فیزیولوژیک در سوئه فیتیولانکتون آب شور رژ جلبیکی (Dunaliella sp.) در شرایط مهم مهیضتی متفاوت از نظر شدت‌های نوری از ایران (Dunaliella bardawil-UTEX2538) و غلظت‌های ۵، ۱۰، ۲۰، ۲۱/۵، ۵۰ و ۱۰۰ میکرو‌ایل مورل در مدت ۴۰ روز انجم، گرفته شده که در نظر NaCl ۱/۵ درصد رشد دارا بودن پیشین نمکی سطح و طولانی بودن مرحله لگاریتمی رشد، دارای پیشین نمکی سطح و گسترش مرحله لگاریتمی رشد، دارا بودن پیشین نمکی سطح دارد. در نظر داشتن این شرایط داشتن یک مورد از سوئه‌ها در گلومانی از ۱۵۰۰۰ میکرو‌ایل مورل (۱/۵ درصد NaCl) و گسترش مرحله لگاریتمی رشد، دارا بودن پیشین نمکی سطح دارد. در نظر گرفتن سوئه‌های گرمایی از ۱۵۰۰۰ میکرو‌ایل مورل (۱/۵ درصد NaCl) و گسترش مرحله لگاریتمی رشد، دارا بودن پیشین نمکی سطح دارد. در نظر گرفتن سوئه‌های گرمایی از ۱۵۰۰۰ میکرو‌ایل مورل (۱/۵ درصد NaCl) و گسترش مرحله لگاریتمی رشد، دارا بودن پیشین نمکی سطح دارد. در نظر گرفتن سوئه‌های گرمایی از ۱۵۰۰۰ میکرو‌ایل مورل (۱/۵ درصد NaCl) و گسترش مرحله لگاریتمی رشد، دارا بودن پیشین نمکی سطح دارد.

واژگان کلیدی: تغذیه آبزیان، میکرو جلبیک دانالیه‌لا، رشد و پیشین، فیتیولانکتون، پروتئین سلول

نویسنده مسئول، پست الکترونیک: madadkar.m@lu.ac.ir
1. مقدمه

با توجه به کلمه حداکثر دریابی در سلامت انسان و نیز توسعه صنعت بیورش آبزیان در کشور، نیاز به بیان تغذیه‌ی مدیوم سالم و در عین حال کم هزینه برای افزایش و نوزادان آبزیان نظیر میگو و ماهی روز به روز افزایش می‌یابد.

بررسی منابع تغذیه‌ی مدیوم برای افزایش هرچه بیشتر تعداد زیوپلکتون، نازگیر به انجام پرسی‌ها و مطالعات آزمایش‌گاهی بر روی سوء‌های جلیک‌ی، تکسولیک عناوین زیوپلکتون که منابع مهم کارامد و ارزانی در تغذیه زیوپلکتون می‌باشند می‌باشد. زیرا جلیک‌های تکسولیک عناوین تولیدکننده مواد آی در حیات اکوسیستم‌های آبی و تداوم زنجره‌های غذایی نقش اساسی دارد (Latala, 1991).

جلیک دانالیس (Dunaliella) یک جلیک سیزی تکسولیک بدون دردها از شاخه کلیفیل، رده کلاکیمودونداکس، راسته دانالیلیدا و نیروی دانالیلیدا می‌باشد (Kleniart et al., 2012)، که به عنوان یک فيتوپلکتون بیوجز در آب‌های شور دریاها، باتلاق‌ها و تالاب‌ها حائز اهمیت است. نتیجه گونه از Dunaliella جزئی همان‌طور که به آب‌های شیرین و ۳۳ تا ۴۰٪ گونه رابطه به محیط‌های دریابی و شور می‌باشد. (Avron and Ben-Amotz, 1992). نظر به توانایی فراوان جلیک در سازگاری با نمک و شوری محیط زندگی، پرداخت نسبتاً وسیع آن در دستگاه‌های طبیعی مشاهده شده (Pick, 2004) و بنابراین سویه‌های محدّد بومی آن را می‌توان از مناطق مختلف کشور جداسازی نمود.

Dunaliella برحی از سویه‌های این جلیک نظیر قادرند در بی‌شایستگی معین تا ۱۰ درصد وزن خشک خود می‌توانند تولید نمایند (Ben-Amotz, et al., 1982) کلیفیل‌ها نیز به عناوین رنگ‌های طبیعی پایدار بصورت افزودنی های میدیوم به محصولات غذایی افزوده.
محتوای سوسپانسیون سلولی ارژن‌ها به دو بخش تقسیم شده و یک گروه به شرایط شدت نوری (μmolm⁻²s⁻¹) ۵۰±۱۰ و یک گروه دیگر به شرایط شدت نوری ۱۵۰±۲۵ درجه سانتی‌گراد و با فتیوریود (۱/۸ ساعت تا ۱۶ ساعت، نمایشگر) منتقل شدند. در واقع، میزان نور بسته به صرف هزینه‌های زیادی در شرایط آزمایشگاهی و کارگاه‌های بسادگی قابل طراحی باشد، افزایش یافته و دما و فتیوریود نیز در محدوده شرایط طبیعی طراحی گردید.

دوره آزمون به مدت ۲۴ روز که بتواند شامل تغییرات دوره ایستایی منحنی شدند نیز یافته و در این مدت برداشت نمونه‌ها به منظور شمارش سلول‌ها، اندازه‌گیری رنگدانه‌های بالحالی، کاربردیت کل و باکتریون‌ها در‌جه سبک نور روز یکبار و تنظیم دستگاه، وزن و میزان پروتئین نیز یافته و در روزهای صفر (قبل از شروع آزمون) +۱ و +۲۴ انجام گرفت. آزمون دیگری در شدت نوری ۵۰±۴ و بدون فتیوریود تا روز ۱۶ام (Continuous light) ادامه یافت و به جهت کوتاهی بودن دوره آزمون آن‌ها از برخی اطلاعات انت در قسمت بخش و نتایج استفاده گردید. شمارش سلولی با استفاده از لامین‌ای هم‌سایه‌ای انجام داده شد و تعداد سلول‌ها در هر میلی‌لیتر از سوسپانسیون جلبکی محاسبه گردید.

امدادگیری میزان باکتریون به روش Eijckelhoff (در سال ۱۹۹۷، مقدار کاربردیت کل و اند Dekker) کلروفلیک با روش Bradford و همکاران (در سال ۲۰۰۱) مقدار کاربردیت از محلول پروتئین استاندارد آلبومین گاو بر اساس اندازه‌گیری ژبم نمونه‌ها با استفاده از دستگاه اسپکتروفوتومتر (مدل Shimatzu, UV-160) در ۱۰۰ سولو گزارش گردید. برای اندازه‌گیری وزن نمونه‌های میلی‌لیتر سوسپانسیون در یک میکروپوال توزین شدید بخش صیف و سپس به دست ۶۵ میلی‌لیتر میکروباشی مقدار میلی‌لیتر میکروباشیرا به دست آمد. Hadi et al., ۲۰۰۸) با این حال طراحی شرایطی که از نظر اقتصادی به صرف بوده و امکان فراهم نمودن ان برای رشد جلبک در کارگاه‌های کوچک، ساده‌تر و عملی‌تر باشد، بیشتر نظیرد. به‌همین منظور در این تحقیق با استفاده از تغییرات نور و نیز غلظت‌های میکروباشی برای رشد جلبک در یک محصوله عملی، بعنوان دو عامل مهم و تاثیرگذار بر خصوصیات و رفتار فیزیولوژیک جلبک، مقایسه و بی‌پرو هوا یک سویه ایرانی جلبک کائن‌رهی انسانی‌های روزه صورت گرفت و از این طریق غلظت‌های نمکی بهینه و زمان‌های مناسب برای برداشت جلبک به منظور بهره‌گیری‌های آتی مورد پرسی و ارزیابی واقع شدند.

۲. مواد و روش‌ها

دو سویه جلبک تحت عنوان Dunaliella تهیه شده از کلکسیون D. bardawil (UTEX2538) جلبکی دانشگاه تگزاس و یک سویه ایرانی استخراج شده از منابع گازخونی اصفهان sp. بطور کلی بر روی میکروباشی کشت گردید (برای ۱/۵ درصد آگار) تلفیق شده و پس از گندش جنگلی روز و به‌دنبال کشت‌کشن اندازه‌گیری انجام شد. این مراحل جهت اطمینان از حذف تمایل سی سبب انجام گرفت. طراحی شرایط آزمون با تهیه میکروباشی‌های مابعد اساس میکروباشی اصلاح شده جانسون و همکاران (Johnson, ۱۹۶۸) با pH معادل با ۷/۳ و در غلظت‌های مختلفی متشکل (NaCl) (۰/۱۰، ۱/۰، ۱/۱۵، ۰/۰۵ و ۰ مولار نمک تهیه گردید.) مقدار ۱/۳ میلی‌لیتر از میکروباشی کشت مابعد اساس، شرایط استیلری به ارلن مایرهای گردید. مقدار ۵ میلی‌لیتر از میکروباشی کشت مابعد اساس، شرایط استیلری به ارلن مایرهای گردید. مقدار ۵۰ میلی‌لیتر اتوکلاو کشت مابعد اساس، شرایط استیلری به ارلن مایر گردید. صورت گرفت که عامل سلول‌زایی در هر روز تقریباً معادل ۰/۵ سولو در میلی‌لیتر میکروباشی کشت باشد.
براساس تجزیه آماری داده‌های شکل ۲ اثر تیمار نور و D. bardawil بر روی تخمین‌های سلولی در ۱۵۰ درجه سانتی‌گراد به دست آمده، دانالیئلا از نوع دی‌آنتی‌گریمی سولاری می‌تواند در محیط‌های گرددیم (2011) در مدل طبیعی به مدت ۴۴ ساعت در دمای ۲۰ درجه سانتی‌گراد تغییری هیچ‌کدامی از عناصر اولیه رسمی و ضریب میلی‌لیتر سولیکس محیط در سلول‌ها در دانالیئلا و D. bardawil مشاهده نمی‌شود و در سلول‌های دانالیئلا و D. bardawil اثر نور در حالت بهتر از حالت دمای در دانالیئلا و D. bardawil مشاهده می‌شود.

در شکل ۱، سولیکس‌های سلولی دانالیئلا سبز دانالیئلا را در دو شدت نوری و غلظت‌های متفاوت نمک نشان می‌دهد. بر اساس شکل موردی نظر، غلظت شبکه نور سبب کاهش رنگ سولیکس‌های سلولی شده که این مورد در سلول دانالیئلا بازتر است.

شاخص محاسبه گرددیم

(SGR = ((ln N₂ - ln N₁))/ Δt)

(D) = ln N₂ / SGR

برای ارزیابی حجم سلول، با استفاده از تکنیک ویدم میکروسکوپی از سلول‌ها در شرایط باشی، پیلر برداری شد و محاسبه حجم سلول با استفاده از روشهای همانیان و Berube تابع بررسی میکروسکوپی اثرگذاری گرددیم. آزمایشات بصورة فاکتوریال در قالب طرح تهیه کامل تصادفی در ۳ تکرار انجام گرفت. میانگین حجم سلول با اندازه‌گیری اعداد ۵۰ عدد سلول محاسبه گرددیم.

نتایج

۲. شکل ۱، سولیکس‌های سلولی دانالیئلا سبز دانالیئلا را در دو شدت نوری و غلظت‌های متفاوت نمک نشان می‌دهد. بر اساس شکل موردی نظر، غلظت شبکه نور سبب کاهش رنگ سولیکس‌های سلولی شده که این مورد در سلول دانالیئلا بازتر است.

شاخص محاسبه گرددیم

(SGR = ((ln N₂ - ln N₁))/ Δt)

(D) = ln N₂ / SGR

برای ارزیابی حجم سلول، با استفاده از تکنیک ویدم میکروسکوپی از سلول‌ها در شرایط باشی، پیلر برداری شد و محاسبه حجم سلول با استفاده از روشهای همانیان و Berube تابع بررسی میکروسکوپی اثرگذاری گرددیم. آزمایشات بصورة فاکتوریال در قالب طرح تهیه کامل تصادفی در ۳ تکرار انجام گرفت. میانگین حجم سلول با اندازه‌گیری اعداد ۵۰ عدد سلول محاسبه گرددیم.

نتایج

۲. شکل ۱، سولیکس‌های سلولی دانالیئلا سبز دانالیئلا را در دو شدت نوری و غلظت‌های متفاوت نمک نشان می‌دهد. بر اساس شکل موردی نظر، غلظت شبکه نور سبب کاهش رنگ سولیکس‌های سلولی شده که این مورد در سلول دانالیئلا بازتر است.
بررسی های آماری نشان داد که تاثیر نور بر تغییرات کلروفیل در میان دیگر میان دارد (جدول ۳). روند منحنی در شدت نوری \(E \) ویژه، یک روند نزولی بود. بیشترین مقدار کلروفیل در شدت نوری \(150 \pm 1 \) \(\mu E \) مشاهده گردید. مقایسه میانگین‌ها میان گلپت‌های نمکی، اختلاف معنی‌داری در تیمار نوری \(10 \pm 1 \) \(\mu E \) نشان داد. روند تغییرات کلروفیل کل مشارکته داشت (نتایج نشان داده شده است). مشابه اشکال ۴ و ۵ روند تغییرات ساکرازین و کاروتئین سلول، البته تقریبا مشابه با تغییرات کلروفیل کل از خود نشان داد. شکل ۶ روند تغییرات کلروفیل سلول در شرایط نوری مختلف را نشان می‌دهد. بررسی آماری نشان داده‌ها اختلاف معنی‌دار بین محتوای پروتئین در شدت نوری \(150 \pm 5 \) و شدت نوری \(50 \pm 1 \) \(\mu E \) برای خود نشان داد. شکل ۳ افراشک سلولی بود (جدول ۳). افراشک سلول، شبکه‌های آماری، نشان داد که تاثیر تیمار نور بر تغییرات کلروفیل سلول در هم‌گی مقدار گردد. نمکی مایع در جدول ۸ می‌تواند میزان پروتئین در هر سویه معنی‌دار بود. در شدت نوری \(5 \pm 1 \) \(\mu E \) بیشترین مقدار پروتئین در گلپت\(2 \) مولار نمک و روز ۸ آمون حاصل شد. با افزایش شدت نور ناب از ۶ مولار سلول، گسترش شد که در گلپت\(8 \) در روز آزمون، بیشترین مقدار پروتئین را در خود جمعیت نمود. تأثیر متقابل شدت نور، نمک و زمان بر پروتئین در هر سویه و نیز تأثیر متقابل شدت نور، نمک، زمان و سویه بر پروتئین سلول جلبک در سطح \(P \leq 0.05 \) معنی‌دار بود (جدول ۸).

شکل ۱: کشت سیلیسپسون سلولی دو سویه مختلف داتالیا در گلپت‌های مختلف نمکی (از چپ به راست) (۱) (۱۵)، (۲) (۱۵)، (۳) (۱۵)، (۴) (۱۵) مولار نمک \(E \) در شدت نوری \(100 \pm 1 \) \(\mu E \) در شدید دوری \(150 \pm 1 \) \(\mu E \) در شدت نوری \(50 \pm 1 \) \(\mu E \) در شدت نوری \(150 \pm 1 \) \(\mu E \) .
شکل ۴ روند منحنی‌های رشد بر اساس تقسیم سلولی در دو سویه جلبک در شرایط منفعت نیز (a) منحنی رشد Dunaliella sp. در شدت نور د. bardawil (b) منحنی رشد D. bardawil در شدت نور ۱۰±۵ μE در شدت نور Dunaliella sp. (c) منحنی رشد SD نتایج ± در سه میانگین ± می‌باشد.

جدول ۱- ترکیب رشد ویژه (SGR, μ) (در دو سویه جلبک (Dunaliella) در دو شدت نوری منفعت (day⁻¹) طی یک دوره شدتی ۲۴ روزه. مقادیر میانگین ± نتایج ± و حروف کوچک و بزرگ غیرمشابه بر اساس آزمون Tukey روند هدهد و وجود اختلاف معنی‌دار به ترتیب میان نمونه‌های هر سوی و هر سطح، در پی/۱۰۰۰ می‌باشد.

<table>
<thead>
<tr>
<th>شدت نور ۲۴۰±۱۰ μE</th>
<th>شدت نور ۵۰۰±۱۰μE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunaliella sp.</td>
<td>D. bardawil</td>
</tr>
<tr>
<td>Dunaliella sp.</td>
<td>D. bardawil</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>۱۹۴±۴</td>
<td>۱۸۹±۳</td>
<td>۱۸۹±۳</td>
<td>۱۸۹±۳</td>
<td>۱۹۴±۴</td>
<td>۱۸۹±۳</td>
</tr>
<tr>
<td>B</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
</tr>
<tr>
<td>C</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
<td>۱۶۵±۴</td>
</tr>
<tr>
<td>D</td>
<td>۱۹۴±۴</td>
<td>۱۹۴±۴</td>
<td>۱۹۴±۴</td>
<td>۱۹۴±۴</td>
<td>۱۹۴±۴</td>
<td>۱۹۴±۴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

غلظت نمک (مولار) ۰/۵۰ ۱/۵ ۱ ۴ ۳
جدول ۲: زمان دو برابر شدن سلول‌ها بر حسب روز در سویه جلبک (DT) در دو شدت نوری متفاوت طی یک دوره رشدی Dunaliella سلول‌ها بر حسب روز در دو سویه جلبک ۲۴ روزه مقدار میانگین سه تکرار ± SD بوده و حروف کوچک و بزرگ غیرمتناسب بر اساس آزمون Tukey نشان دهنده وجود اختلاف معنادار به ترتیب میان نمونه‌های هر سویه و هر سطح، در ۰/۰۵ می‌باشد.

<table>
<thead>
<tr>
<th>شدت نور (μE)</th>
<th>شدت نور (μE)</th>
<th>فاصله نمک (مولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunaliella sp.</td>
<td>D. bardawil</td>
<td>Dunaliella sp.</td>
</tr>
<tr>
<td>BC/D/150±1μE</td>
<td>a</td>
<td>B/3/9777±1μE</td>
</tr>
<tr>
<td>A/50±1μE</td>
<td>B/120±1μE</td>
<td>A/3/9516±1μE</td>
</tr>
<tr>
<td>A/50±1μE</td>
<td>B/120±1μE</td>
<td>A/3/9516±1μE</td>
</tr>
<tr>
<td>A/50±1μE</td>
<td>B/120±1μE</td>
<td>A/3/9516±1μE</td>
</tr>
</tbody>
</table>

شکل ۲: روند تغییرات کلروفیل در سویه جلبک Dunaliella و D. bardawil در شدت‌های مختلف نوری.

بررسی اثرات اصلی و متقابل تیمارهای اعمال شده بر وزن تر و خشک سویه‌های دانالیه‌ها را تحت تأثیر تیمارهای نور، نمک و زمان نشان می‌دهند.

۳۱
سودن کلیه اثرات در سطح پاسخنرسانی به جز تاثیر سلول قارچی و در ارتباط با وزن خشک به جز تاثیر سلول قارچی و در ارتباط با وزن خشک به جز تاثیر سلول بی‌معنی و در ارتباط با وزن خشک به جز تاثیر

در مورد سویه ایرانی، کلیه اثرات اصلی بر وزن خشک بیشترین مقدار وزن خشک در شرط نوری

بیشترین مقدار وزن خشک در شرط نوری 0.4E در سویه بارداولو و سویه ایرانی بترتیب در روز 16 و 143 (هر دو در گلدشت 3 مولار) و در شرط نوری 15 در روز 86 کشت (بترتیب در گلدشت های 1/0 و 2 میلیون نانو کیلو متر مکعب) را برای سویه بارداولو و 17/16 ± 79/95 میکرومتر مکعب را برای سویه ایرانی نشان می‌دهد و بررسی‌های آماری با استفاده از آزمون T-Test معنی‌دار بودن اختلاف سایز میان دو سویه را در پاسخنرسانی نشان داده است.

جدول ۲. تجزیه واریانس ترکیبات و شاخص‌های اندازه‌گیری شده در جلیک دانیلیلا.

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه حرارت</th>
<th>تعداد سلول</th>
<th>کلروفیل کل</th>
<th>بناکراتون</th>
<th>پروتئین</th>
<th>وزن تر خشک</th>
<th>وزن تر خشک</th>
<th>زمان</th>
<th>سویه</th>
<th>غلظت نمک</th>
<th>شدت نور</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>۳</td>
<td>۱/۶۸/۴۵۰</td>
<td>۱/۳۶/۴۵۰</td>
<td>۱/۷۷/۸۵۰</td>
<td>۱/۷۱/۴۵۰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ns، معنی‌دار در سطح احتمال 5 درصد.
شکل ۴: روند تغییرات بنی‌گروین سلول در دو سویه جلبک Dunaliella در شدت نور D. bardawil (a) در شدت‌های مختلف نوری. μE ± 10-150 μE در شدت نور Dunaliella sp. (c) در شدت نور D. bardawil (b) μE ± 10-150 μE.

شکل ۵: دیدگاه تغییرات کاروتئینه کل سلول در دو سویه جلبک Dunaliella در شدت نور D. bardawil (a) در شدت نور Dunaliella sp. (d) در شدت نور Dunaliella sp. (c) در شدت نور D. bardawil (b) μE ± 10-150 μE. مقدار میانگین ± تکرار SD μE ± 10-150 μE.
شکل 4 روند تغییرات پروتئین سول در دو سواد جلبک Dunaliella در شدت نور D. bardawil (a) در شدت نور Dunaliella sp. (d) و Dunaliella sp. (c) در شدت نور D. bardawil (b) : 50 ± 10 μE در شدت نور Dunaliella sp. (c) : 150 ± 10 μE در شدت نور Dunaliella sp. (d) : 50 ± 10 μE

جدول 4 وزن تر بر حسب میکروگرم بر 6 حیوان در دو سواد جلبک Dunaliella داشته و بررسی شده است. نشان دهنده وجود اختلاف معنی‌دار میان نمونه‌های هر سرزمین در P<0.01 می‌باشد.

<table>
<thead>
<tr>
<th>دنویس</th>
<th>تائف</th>
<th>میکروگرم</th>
<th>P< 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunaliella sp.</td>
<td>72 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
<tr>
<td>D. bardawil</td>
<td>72 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
<tr>
<td>Dunaliella sp.</td>
<td>48 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
<tr>
<td>D. bardawil</td>
<td>48 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
<tr>
<td>Dunaliella sp.</td>
<td>24 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
<tr>
<td>D. bardawil</td>
<td>24 h</td>
<td>1534±156</td>
<td>0.025</td>
</tr>
</tbody>
</table>

مکان (مولکول)
جدول ۵. وزن تبر حسب میکروگرم بر ۱ سول، در دو سویه جلیک Dunaliella در شدت نوری $\mu E \pm 5\%$ طی یک دوره رشدی ۲۴ روزه. مقادیر میانگین سه تکرار ± SD بوده و حروف غیرمشابه بر اساس آزمون Tukey نشان دهنده وجود اختلاف معنی‌دار میان نمونه‌های هر سولون در $P<0.05$ می‌باشد.

<table>
<thead>
<tr>
<th>شدت نور</th>
<th>سویه زمان نمک</th>
<th>نمک (مولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۰۰±۱۰۰ μE</td>
<td>Dunaliella sp.</td>
<td>D. bardawil</td>
</tr>
<tr>
<td>روز ۲۴</td>
<td>روز ۱۶</td>
<td>روز ۸</td>
</tr>
<tr>
<td>$\pm 134 \pm 50$</td>
<td>$\pm 132 \pm 50$</td>
<td>$\pm 133 \pm 50$</td>
</tr>
<tr>
<td>$\pm 134 \pm 50$</td>
<td>$\pm 132 \pm 50$</td>
<td>$\pm 133 \pm 50$</td>
</tr>
<tr>
<td>$\pm 134 \pm 50$</td>
<td>$\pm 132 \pm 50$</td>
<td>$\pm 133 \pm 50$</td>
</tr>
</tbody>
</table>
جدول ۱: وزن خشک بر حسب میکروگرم بر ۴ سولون در دو سویه جیلک در نشریه جلکم زنده‌شده رنگی دو رشته ۴۰ روزه. مقادیر میانگین سه نکرار ± SD بوده و حروف غیرمشابه بر اساس آزمون Tukey نشان دهنده وجود اختلاف معنی‌دار میان نمونه‌هاي هر ستون در پ-value: ۰/۰۱.

<table>
<thead>
<tr>
<th>البصر</th>
<th>هاگرب ۱۵±۱۰ μE</th>
<th>هاگرب ۱۵±۱۰ μE</th>
</tr>
</thead>
<tbody>
<tr>
<td>تعداد نور</td>
<td></td>
<td></td>
</tr>
<tr>
<td>سیاهه</td>
<td>زمان نمونه‌‌گیری</td>
<td>مولکول‌ها</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunaliella sp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| روز ۲۴ | روز ۱۶ | روز ۸ | روز ۱۴ | روز ۱۶ | روز ۸ | روز ۱۴ | روز ۲۴ | روز ۱۶ | رоз
جدول 7 وزن خشک بر حسب میکروگرم بر 100 سول، در دو سویه جلبک در شدت توری 50 ± 10 μE در Dunaliella. مقایسه میانگین سه تکرار ± خود و حروف غیر مشابه بر اساس آزمون Tukey، نشان دهنده وجود اختلاف معنی‌دار میان نمونه‌های هر استان در P<0.05 می‌باشد.

<table>
<thead>
<tr>
<th>شدت تور</th>
<th>سویه</th>
<th>زمان</th>
<th>نمک</th>
<th>(مولار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>مایه</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>50/1</td>
<td>1/1</td>
<td>15/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>50/2</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>25/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>50/2</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
<tr>
<td>100</td>
<td>مایه</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

4. بحث و نتیجه‌گیری

شوری و نور دو عامل محیطی بسیار مهم هستند که بر تعداد و کیفیت غذای فیتوفلاکتون‌ها موثرند. بنابراین تحقیق (Navarro et al., 1999) افراز این سویه باعث افزایش بهره‌برداری و زیادی از چربی‌های کربن‌دار می‌گردد. (Nutra - Kol. Nutrition solutions). نتایج بدست آمده از آزمون حاضر به منظور کشت و پرورش جلبک در شرایط ساده کارگاهی صورت گرفته‌نشان می‌دهد، بیشترین تعداد سول سه روز بعد در سال 19 day (نبرد رشد ویژه تقریباً بر اساس نسبت ارتباط بین تعداد در مولی‌ها 15) و 1/1 مولی‌های شرایط توری (150 ± 1 μE) و شرایط توری (50 ± 1 μE) در اثر ادامه حرکت واقع نشد و تعداد روی‌فیلرهای آب‌شیرین با افزایش
به اساس نتایج Shamra و همکاران در سال ۱۳۹۲، مازکیمی تعداد پروتئین سلولی به‌دست آمده از یک سوسیا در خروجی شده از هنتر، شیء و از آغاز کشت در مولاریتی ۱/۱۷ \(\times \) میکروگرم/یاله (۱/۱۰۰ میکروگرم/یاله) تقریباً معادل \(\times \) میکروگرم/یاله نرخ رشد بی‌باید در تقویم بروز در مولاریتی ۱/۱۷ مولاریتی به است. در مقایسه سوسیا ایرانی با مرحله لگاریتمی طولانیتر (۱۲ روز)، نرخ رشد کمتر از نصف این سلولی تعداد سلولی به تعداد مولاریتی ۱/۱۵ مولاریتی و شرایط نوری مشابه، از جهاتی پیوندی می‌تواند باشد.

به اساس نتایج توصیف سال، بطور کلی پروتئین سلولی در شرایط نور بی‌باید از دیدگاه شناسی در داده و همچنین مازکیمی مقدار را برای لگاریتمی (پایین‌تر) (۱/۱۰۰ میکروگرم/یاله) از هنتر و ۰/۱۵ به جای مولاریتی (۱/۱۷ میکروگرم/یاله) نشان می‌دهد. بنابراین به نظر می‌رسد میزان نور و غلظت نمک هر دو به میزان پروتئین سلولی تاثیر گذارند. نتایج آنالیز واریانس، معنی‌دار بودند از معاین و شوری در این آزمون را در نزدیکی می‌دانند. به نظر می‌رسد که واکنش‌های سازگاری به شدت نوی بالاتر و نزی ادامه تکسیمات سلولی، تغییر معمولی یکسانی بیشتر در سنتز پروتئین و Kirrolia سلول در این شرایط باشد. نتایج آزمون و همکاران در سال ۱۳۱۱ نشان داد که میزان پروتئین جلبک سنگ‌رسوس (Senedesmus) و D. bardawil پایین کاهش یافت و باعث در پایکوبی افزایش می‌باشد که در افزایش مولکولیات افزایش می‌باشد. همچنین بر اساس تخمین جیانگ و Chen شوری محیط بیان برخی آنزیمی سازگاری کننده در افزایش می‌باشد. نتایج به‌دست آمده از آزمون حاضر در شرایط نور کم با نتایج محققین فوق، همچنین نشان می‌دهد اما به افزایش شدت نور، مولاریتی‌های زیر ۱ مولار نمک محتوای پروتئینی خود را بیشتر از سایر مولاریتی‌های افزایش داده و بنظر می‌رسد که خود را از طریق سنتز پروتئین‌های
نتایج آماری معمولی به دو اثر اصلی زمان و اثر بالمتغییرات دیگر می‌گذرد. البته وقت بین اولین و دومین گروه قرار گرفته و نیز دو نمونه مشابه در روش‌های بکار بردن بر اساس زمان دو برابر گردیده و نیز دو نمونه مشابه در روش‌های بکار بردن بر اساس زمان دو برابر گردیده است. البته وقت بین اولین و دومین گروه قرار گرفته و نیز دو نمونه مشابه در روش‌های بکار بردن بر اساس زمان دو برابر گردیده است. البته وقت بین اولین و دومین گروه قرار گرفته و نیز دو نمونه مشابه در روش‌های بکار بردن بر اساس زمان دو برابر گردیده است.

Hadi, M. R., Shariati, M. and Afsharzadeh, S. 2008. Microalgal biotechnology: carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt...

Leflaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F. and
Evaluation of growth rate, protein content and some physiological characteristics from two salt water phytoplanktonic species, microalga *Dunaliella*, under different environmental conditions

Roya Mohammadkhani, Maryam Madadkar Haghjou*

Biology Department, Faculty of Science, Lorestan University, Khoramabad, Iran

Abstract:
Regarding the importance and selection of phytoplankton culturing for feeding marine zooplankton and fishes, under simple and practical conditions, two species of an unicellular green alga, *Dunaliella* sp. (isolated from Iran) and *D. bardawil*-UTEX 2538, were cultured and their growth characteristics were studied under different environmental light intensities (50µE and 150µE) and salt concentrations (0.1, 0.5, 1, 1.5, 2 and 3M NaCl). *Dunaliella* sp. was different from *D. bardawil* because of having the longer logarithmic growth phase, higher number of cells (19×10^6 cells.ml^-1) in 0.1M and 0.5M at light intensities of 150µE and 50µE respectively, higher chlorophyll and carotenoid contents, bigger size of cells (307.16±87.95μm^3) and higher dry weight at 0.5M on 8th day from the beginning of experiment under 150µE, than those in *D. bardawil*. Protein content from the cells increased in both strains on 8th day but the maximum amount was belonged to *D. bardawil* under 150µE. The highest specific growth rate (SGR) and the lowest doubling time (DT) were seen under 50µE at 0.1 M and 0.5 M (Iranin species and *D. bardawil*, respectively) and under 150µE in 0.5M (Iranian species) and 1M and 1.5M (*D. bardawil*). The highest SGR and the lowest DT of *D. bardawil* was at 50µE and for *Dunaliella* sp. was at 150µE (both at 0.5M). Increasing in light intensity from 50 μE to150µE, caused decrease in chlorophyll and carotenoid contents and conversely increase in protein content (also the highest amount of fresh weight on 8th day) in most of the samples. Overall, Iranian species at lower salt concentrations showed better growth and higher efficiency.

Keywords: Marine organism feeding, Micro alga *Dunaliella*, Phytoplankton, Protein content, Specific growth rate