Document Type : Original Manuscript

Authors

1 Department of Marine Chemistry, Faculty of Marine Science & Marine Science Research Institute, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2 bACECR-Production Technology Research Institute, Ahvaz, Iran

Abstract

In this study, the removal of congo red and erythrosine as anionic dyes were investigated by using the cucurbit[6]uril nonporous as a new adsorbent. In the proposed mythology, the Batch removal method was applied. In order to obtain maximum removal efficiency, the effects of acidity of solution, adsorbent dusage and contacting time were investigated and optimized. Adsorption experimental data were analyzed using Langmuir and Freundlich isotherm models and the best-fitted data was obtained with the Langmuir model. The maximum adsorption capacity was 128.2 mg g-1 and 95.9 mg g-1 for congo red and erythrosine, respectively. This method was successfully applied for the removal of congo red and erthrosine dyes from Karron and Bahmanshir water river and Persian Gulf water samples.

Keywords

Main Subjects

Abu Shawish, H.M., Abu Ghalwa, N., Saadeh, S.M. and El Harazeen, H., 2013. , Development of novel potentiometric sensors for determination of tartrazine dye concentration in foodstuff products. Food Chem., 138: 126-132.
Adelman, N.B., Beckman, K.J., Campbell, D.J., Ellis, A.B. and Lisensky, G.C. 1999. Preparation and Properties of an Aqueous Ferrofluid.  J. Chem. Educ., 76: 943-955.
Al-Degsa, Y.S., Abu-El-Halawab, R. and Abu-Alrub, S.S., 2012. Analyzing adsorption data of erythrosine dye using principal component analysis. Chem. Eng. J., 191: 185- 194
Chan, S.L., Chan, Y.P., Abdullah, A.H. and Ong, S.T., 2016. Equilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic Blue 3 and Congo Red dyes: Pineapple ( Ananas comosus ) plant stem. J. Taiwan Inst. Chem. Eng. 61, 306–315.
Cheng, X. J., Liang, L.L., Chen, K., Ji, N.N., Xiao, X., Zhang, J.X., Zhang, Y.Q., Xue, S.F., Zhu, Q.J., Ni, X. L. and Tao, Z.,2013. TwistedCucurbit[14]uril. Angewandte Chemie International., 52:7252-7255.
Day, A.I., Blanch, R.J., Arnold, A.P., Lorenzo, S., Lewis, G.R. and Dance, I.A,  2002. Cucurbituril-Based Gyroscane. Angewandte Chemie International., 41: 275-277.
El Haddad, M., Slimani, R., Mamouni, R., Laamari, M.R., Rafqah, S. and Lazar, S., 2013. Evaluation of potential capability of calcined bones on the biosorption removal efficiency of safranin as cationic dye from aqueous solutions, J. Taiwan Inst. Chem. Eng., 44: 13-18.
Frimmel, F.H. and Huber, L. 1996. Influence of humic substances on the aquatic adsorption of heavy metals on defined mineral phases. Environ. Int., 22: 507- 517.
Forgacs, E., Cserháti, T., and Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int., 30: 953-971.
Ghaedi, M., Rozkhoosh, Z., Asfaram, A., Mirtamizdoust, B., Mahmoudi, Z. and Bazrafshan, A.A., Comparative studies on removal of Erythrosine using ZnS and AgOH nanoparticles loaded on activated carbon as adsorbents: Kinetic and isotherm studies of adsorption. Spectrochim. Acta A, 138:176–186
Hettiarachchi, G., Nguyen, D., Wu, J., Lucas, D., Ma, D., Isaacs, L. and Briken, V., 2010. Toxicology and Drug Delivery by Cucurbit[n]uril TypeMolecular Containers. PLoS One, 5 : No. e10514.
Lagona, J., Mukhopadhyay, P., Chakrabarti, S. and Isaacs, L., 2005. The Cucurbit[n]uril Family. Angewandte Chemie International., 44: 4844-4870.
Masson, E., Ling, X.X., Joseph, R., Kyeremeh-Mensah, L. and Lu, X.Y., 2012. Cucurbituril Chemistry: A Tale of Supramolecular Success. RSC Advances., 24: 1213-1247.
Ni, X. L., Xiao, X., Cong, H., Liang, L. L., Cheng, K., Cheng, X. J., Ji, N. N., Zhu, Q. J., Xue, S. F. and Tao, Z., 2013. Cucurbit[n]uril-BasedCoordination Chemistry: From Simple Coordination Complexes toNovel Poly-Dimensional Coordination Polymers. Chem. Soc. Rev., 42: 9480-9508.
Noroozian, E., Maris, F.A., Nielen, M.W.F., Frei, R.W., de Jong, G.J. and Brinkman, U.A.Th., 1987. Liquid chromatographic trace enrichment with on-line capillary gas chromatography for the determination of organic pollutants in aqueous samples. J. High Resolut. Chromatogr., 10:17- 24.
Pavan, F.A., Dias, S.L.P., Lima, E.C. and Benvenutti, E.V., 2008. Removal of Congo red from aqueous solution by anilinepropylsilica xerogel. Dyes Pigm., 76, 64-69.
Pourreza, N., Rastegarzadeh, S. and Larki, A., 2011. Determination of Allura red in food samples after cloud point extraction using mixed micelles. Food Chem., 126: 1465–1469.
Ranjbari, E., Hadjmohammadi, M.R., Kiekens, Filip. and De Wael Bleau, K., 2015. Mixed Hemi/Ad-Micelle Sodium Dodecyl Sulfate-Coated Magnetic Iron Oxide Nanoparticles for the Efficient Removal and Trace Determination of Rhodamine-B and Rhodamine-6G. Anal Chem., 87: 7894-7901.
Roosta, M., Ghaedi,M., Daneshfar, A., Sahraei, R. and Asghari, A., 2015. Optimization of combined ultrasonic assisted/tin sulfide nanoparticle loaded on activated carbon removal of erythrosine by response surface methodology. J. Ind. Eng. Chem., 21: 459-469.
Saghanezhad, S.J., Nazari, Y. and Davod, F., 2016. Cucurbit[6]uril-OSO3H: a novel acidic nanocatalyst for the one-pot preparation of 14-aryl-14Hdibenzo[a,j]xanthenes and 1,8-dioxo-octahydroxanthenes, RSC Adv., 6: 25525–25529.
Seyahmazegi, E.N., Mohammad-Rezaei, R. and Razmi, H., 2016. Multiwall carbon nanotubes decorated on calcinedeggshell waste as a novel nano-sorbent:Application for anionic dye Congo red removal. Chem. Eng. Res. Des., 109, 824-834.
Zargar, B., Parham, H. and Hatamie, A., 2009. Modified iron oxide nanoparticles as solid phase extractor for spectrophotometeric determination and separation of basic fuchsin. Talanta, 77: 1328-1331.
Zhang, J. and Misra, R.D.K., 2007. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomaterialia, 3: 838-850.